

SYM'PREVIUS MAP: A WEB APPLICATION FOR THE DESIGN OF FOOD PACKAGING TO IMPROVE THE PRESERVATION OF FOOD PRODUCTS

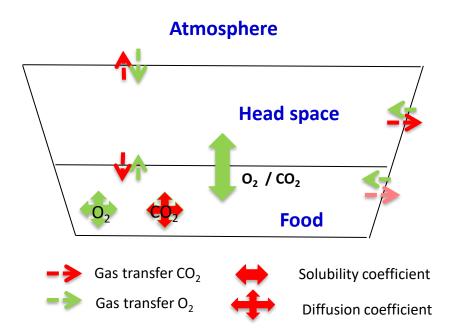
Jonathan Thévenot, <u>Yvan Le Marc</u>, Véronique Huchet, Catherine Denis, Janushan Christy, Valérie Michel, Valérie Stahl, Didier Majou, Emilie Gauvry, Emmanuel Jamet, Fanny Tenenhaus-Aziza, Jean-Christophe Augustin, Narjes Mtimet, Guillier Laurent, Sabine Jeuge, Jeanne-Marie Membré, Anna Jofré, Alizée Guérin, Aline Rault, Stella Planchon¹⁶, Olivier Couvert, Louis Coroller

Presentation outline

- 1. Modified Atmosphere Packaging
- 2. Models for gas exchanges and bacterial growth
- 3. Predictive software
- 4. Take home messages

Modified atmosphere packaging (MAP)

- Modified Atmosphere Packaging (MAP) allows to preserve the appearance, texture and nutritional properties of foods, while limiting the use of preservatives and reducing sanitizing processes
- MAP is mainly used by the food industry to increase shelf-life of packaged products, including microbial shelf-life

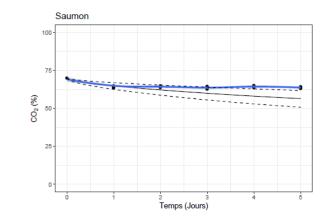

Objective: design a predictive tool that will enable manufacturers to design and optimize food packaging to improve the preservation food products under MAP

Modified atmosphere packaging (MAP)

• Design MAP food packaging can be optimized by accounting for the gas exchanges and the inhibitory effects of gas concentrations throughout product shelf life


Models for bacterial growth and gas exchanges

- Predictive microbial models for the effect of CO₂ and O₂ on bacterial growth (Couvert et al., 2017, 2019, 2023)
- A mathematical model for coefficients of solubility and diffusion of CO₂ as a function of nutrition information
- Mathematical equations for headspace CO₂/O₂ dynamics (Guillard et al., 2016, 2017)
 - $O_2/CO_2/N_2$ transfer between headspace and external atmosphere
 - O_2/CO_2 solubilization and diffusion within the food
 - variations in headspace volume and composition



Models for CO₂ solubility and diffusion

- Quadratic model for the diffusion coefficient and solubility of CO₂ based on nutritional composition data of foods :
 - Water
 - Fat
 - Proteins
 - NaCl
 - Carbohydrates
 - Fibers

The model developed was validated in various food products including e.g. ham, salmon, cheese stored under MAP

Prediction
- Confidence interval
Measured CO₂ in headspace

The Sym'Previus predictive tool

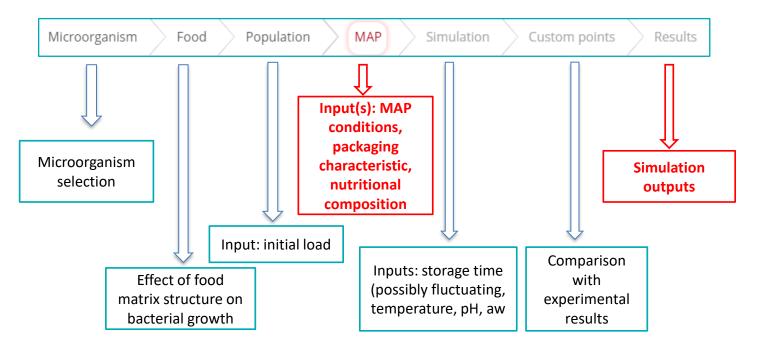
0

Ð

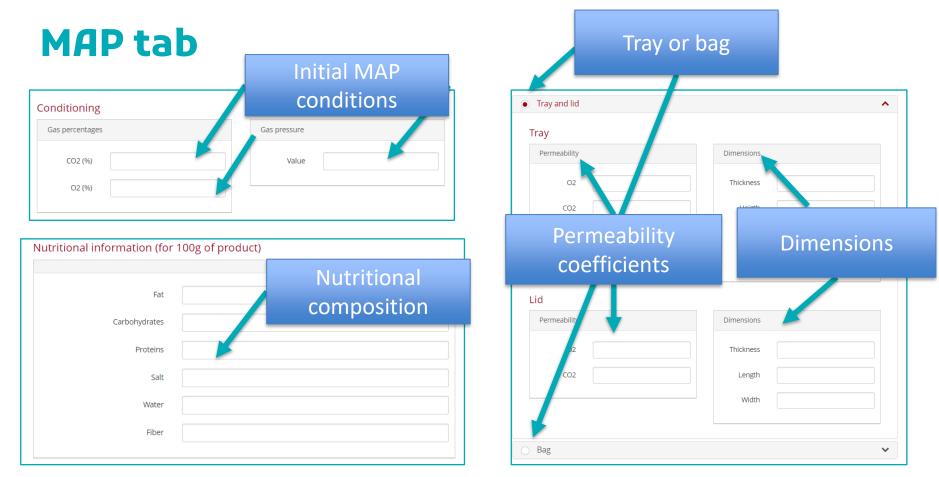
The Sym'Previus software is a set of decision support tools for food safety and quality (www.symprevius.eu)

- Identification of critical points (HACCP)
- Determination of the growth potential of microorganisms
- Assist in determining shelf life
- Optimize heat treatments

Why use Sym'Previus



- Designed to support shelf-life determination, product formulation and process optimisation to reduce costs and time to market
- An extensive repositary of predictive models that use recognized scientific
- approaches and were validated in food
- A user-friendly interface and dynamic plots and charts make the analysis quick and easy
- Referenced in the educational kit "Control of microbiological shelf life" developed by the French General Directorate for Food (DGAL) and the CTN QUALIMA


SYM'PREVIUS

Implementation in the predictive software Sym'Previus

Modification of the usual software framework

Results tab

Main outputs

- Bacterial growth kinetics as a function of time
- Probability to exceed a threshold concentration (specified by the user) at the end of stockage time
- Evolution of gas (CO₂ and O₂) in the head space

Take home messages

- A simulation tool that will support design and optimisation MAP and food packaging (available in French and English)
- Simulations of growth under MAP available for different pathogenic or spoilage microorganisms
- The simulations use only data that is readily available to manufacturers (e.g., nutritional composition). Shiny app tools will be made available to facilitate unit conversion (for e.g., gas permeability)

Acknowledgments

